Victoria Fast and Daniel Liadsky receive Ryerson’s top award

November 11th, 2015

Blog post co-authored by Victoria Fast, Daniel Liadsky, and Claus Rinner

Ryerson’’s Department of Geography and Environmental Studies is celebrating two gold medal recipients this fall. The Ryerson Gold Medals are the University’s highest honours, presented annually to one graduate of each Faculty. Victoria Fast (PhD in Environmental Applied Science and Management, supervised by Dr. Claus Rinner) received the Gold Medal for the interdisciplinary programs housed at the Yeates School of Graduate Studies, while Daniel Liadsky (MSA in Spatial Analysis, supervised by Dr. Brian Ceh) received the Gold Medal for the Faculty of Arts.

Victoria’’s PhD research investigated the potential of novel geographic information techniques to reshape the interaction of government with community organizations and citizens through crowdsourcing and collaborative mapping. The study applied a VGI systems approach (Fast & Rinner 2014) to actively engage with urban food stakeholders, including regional and municipal government, NGOs, community groups, and individual citizens to reveal and map uniquely local and community-driven food system assets in Durham Region. The Durham Food Policy Council and Climate Change Adaptation Task Force are currently using the results to support informed food policy and program development. Victoria’s research contributes to, a SSHRC Partnership Grant on the impact of the participatory Geoweb on government-citizen interactions.

Daniel’’s research in the Master of Spatial Analysis (MSA) examined how dietary intake is mediated by individual, social, and environmental factors. The Toronto-based study was stratified by gender and utilized self-reported data from the Canadian Community Health Survey as well as measures of the food environment derived from commercial retail databases. The results uncovered some of the complex interactions between the food environment, gender, ethnocultural background, and socioeconomic restrictions such as low income and limited mobility. In addition and as part of an unrelated investigation, Daniel undertook a feasibility study into a mapping and data analytics service for the non-profit sector.



Congratulations 2015 MSA Graduates!

November 9th, 2015

Another year has passed and another ‘generation’ of professional Geographers has completed our Master of Spatial Analysis (MSA) degree. Congratulations to the 17 graduates of the Fall 2015 class!

All 17 MSA graduates after Fall 2015 Convocation (photo credit: Vadim Sabetski)

All 17 MSA graduates after Fall 2015 Convocation (photo credit: Vadim Sabetski)

MSA students are required to conduct an independent research project that is documented in a major research paper. This MRP is formally defended and subsequently revised prior to degree completion. This year’s MRPs span the range of applications from sustainable development, Toronto’s SmartTrack transit plan, food retail and foodscapes, health-care service locations, bank branch networks, crime patterns, urban heat islands, and housing. Methods chosen by the students include visual data exploration, multiple regression, multi-criteria decision analysis, risk terrain modeling, self-organizing maps, and many more.

The abstracts for the following 17 major research papers are available from the MSA program homepage at Supervisors are listed in parentheses.

  • Kaylin Chin: Evaluating Sustainable Development Across the Continuous United States: Application of the United Nations’ Indicators of Sustainable Development (Dr. Shaker)
  • Kiyomi French: Analysis of Distribution Centre Locations for a Major Retailer in Canada (Prof. Swales)
  • Adrien Friesen: Smart Track Station Evaluation in Toronto: Ridership Forecasting and Feasibility Analysis of Station Catchment Areas (Dr. S. Wang)
  • Alexa Hinves: Developing a Methodology for Measuring Access to Services: A Case Study of Access to Food Retail Services in the City of Toronto (Dr. Hernandez)
  • Elmer Lara Palacios: The Social and Spatial Patterning of Stress in Canada (Dr. L. Wang)
  • Jacob Levy: A Spatial Analysis of Distribution of Practicing International Medical Graduates in Canada, Ontario, and Toronto (Dr. L. Wang)
  • Daniel Liadsky: Exploring Toronto’s Foodscapes: Measuring The Food Environment and Healthy Eating Behaviours (Dr. Ceh)
  • Bernardo Melendez: Analyzing Change in Bank Branch Networks in the Toronto CMA (Dr. S. Wang)
  • Jessica Miki: PySAL an Open Source Development Framework for Spatial Analysis for Health Data (Dr. Vaz)
  • Nicia Moran: Site Selection using Geographic Information Systems and Multi-Criteria Decision Model (Prof. Swales)
  • Tyler Munn: Spatial Analysis of 911 STEMI Calls for Toronto Paramedic Services (Dr. L. Wang)
  • Ricardo Sanchez: Transformation of Book Retailing in Canada (Dr. S. Wang)
  • Maxwell Stiss: Ground Level Retail and Mid-Rise Development Trends along the ‘Avenues’ of the City of Toronto from 2010-2014 (Dr. Hernandez)
  • Shannon Strelioff: Examining Street Level Robbery Predictors in Durham, Ontario using Statistical and Risk Terrain Modeling (Dr. L. Wang)
  • Kirk Suitor: The Spatio-Temporal Analysis of Toronto Housing Prices (Dr. Kedron)
  • Christine Valancius: Comparing the Cooling Ability of Green Spaces in Suburban and Urban Areas using LST and NDVI (Dr. Forsythe)
  • Yishi Zhao: Cluster Analysis of Injury using Self-Organizing Maps – A Case Study of Extended Golden Horseshoe (Dr. Vaz)

Among the achievements of the Fall 2015 MSA class is Daniel Liadsky’s Ryerson Gold Medal, as described at, as well as Yishi Zhao’s 2nd place in the National Geographic student mapping competition (official announcement still not posted anywhere) and her MSA Award of Distinction, presented at the Department of Geography and Environmental Studies Awards Night on November 4, 2015.

I would also like to note that four students are extending their MSA research phase by one or two semesters to write an MSA thesis. The first student to complete this option, Heather Hart, graduated in Spring 2015 with a thesis on “Maps as Evidence in Health Care Service Improvement and Monitoring” (supervised by Dr. Rinner), which was also recently added to the list at

GIS Day 2015 at Ryerson – A Showcase of Geographic Information System Research and Applications

November 3rd, 2015

Ryerson students, faculty, staff, and the local community are invited to explore and celebrate Geographic Information Systems (GIS) research and applications. Keynote presentations will outline the pervasive use of geospatial data analysis and mapping in business, municipal government, and environmental applications. Research posters, software demos, and course projects will further illustrate the benefits of GIS across all sectors of society.

Date: Wednesday, November 18, 2015
Time: 1:00pm-5:00pm
Location: Library Building, 4th Floor, LIB-489 (enter at 350 Victoria Street, proceed to 2nd floor, and take elevators inside the library to 4th floor)

Tentative schedule:

  • 1:00 Soft kick-off, posters & demos
  • 1:25 Welcome
  • 1:30-2:00 Dr. Namrata Shrestha, Senior Landscape Ecologist, Toronto & Region Conservation Authority
  • 2:00-2:30 posters & demos
  • 2:30-3:00 Andrew Lyszkiewicz, Program Manager, Information & Technology Division, City of Toronto
  • 3:00-3:30 posters & demos
  • 3:30-4:00 Matthew Cole, Manager, Business Geomatics, and William Davis, Cartographer and Data Analyst, The Toronto Star
  • 4:00 GIS Day cake!
  • 5:00 End

GIS Day is a global event under the motto “Discovering the World through GIS”. It takes place during National Geographic’s Geography Awareness Week, which in 2015 is themed “Explore! The Power of Maps”, and aligns with the United Nations-supported International Map Year 2015-2016.

Event co-hosted by the Department of Geography & Environmental Studies and the Geospatial Map & Data Centre. Coffee/tea and snacks provided throughout the afternoon. Contact: Dr. Claus Rinner

Geospatial Data Preparation for 3D Printed Geographies

September 19th, 2015

I am collaborating with my colleague Dr. Claire Oswald on a RECODE-funded social innovation project aimed at using “A 3D elevation model of Toronto watersheds to promote citizen science in urban hydrology and water resources”. Our tweets of the first prototypes printed at the Toronto Public Library have garnered quite a bit of interest – here’s how we did it!


The process from geography to 3D print model includes four steps:

  1. collect geospatial data
  2. process and map the data within a geographic information system (GIS)
  3. convert the map to a 3D print format
  4. verify the resulting model in the 3D printer software

So far, we made two test prints of very different data. One is a digital elevation model (DEM) of the Don River watershed, the other represents population density by Toronto Census tracts. A DEM for Southern Ontario created by the Geological Survey of Canada was downloaded from Natural Resources Canada’s GeoGratis open data site at It came in a spatial resolution of 30m x 30m grid cells and a vertical accuracy of 3m.

The Don River watershed boundary from the Ontario Ministry of Natural Resources was obtained via the Ontario Council of University Libraries’ geospatial portal, as shown in the following screenshot.

Download of watershed boundary file

The population density data and Census tract boundaries from Statistics Canada were obtained via Ryerson University’s Geospatial Map and Data Centre at (limited to research and teaching purposes).

The Don River watershed DEM print was prepared in the ArcGIS software by clipping the DEM to the Don River watershed boundary selected from the quaternary watershed boundaries. The Don River DEM was visualized in several ways, including the “flat” greyscale map with shades stretched between actual minimum and maximum values, which is needed for conversion to 3D print format, as well as the more illustrative “hillshade” technique with semi-transparent land-use overlay (not further used in our 3D project).

DEM of Don River watershedHillshade of Don River valley at Thorncliffe Park

The population density print was prepared in the free, open-source QGIS software. A choropleth map with a greyscale symbology was created, so that the lighter shades represented the larger population density values (yes, this is against cartographic design principles but needed here). A quantile classification with seven manually rounded class breaks was used, and the first class reserved for zero population density values (Census tracts without residential population).


In QGIS’ print composer, the map was completed with a black background, a legend, and a data source statement. The additional elements were kept in dark grey so that they would be only slightly raised over the black/lowest areas in the 3D print.


The key step of converting the greyscale maps from the GIS projects to 3D print-compliant STL file format was performed using a script called “heightmap2stl.jar” created by Markus Fussenegger. The script was downloaded from, and used with the help of instructions written by James Dittrich of the University of Oregon, posted at Here is a sample run with zero base height and a value of 100 for the vertical extent.

Command for PNG to STL conversion

The final step of pre-print processing involves loading the STL file into the 3D printer’s proprietary software to prepare the print file and check parameters such as validity of the structure, print resolution, fill options for hollow parts, and overall print duration. At the Toronto Public Library, 3D print sessions are limited to two hours. The following screenshot shows the Don River DEM in the MakerBot Replicator 2 software, corresponding to the printer used in the Library. Note that the model shown was too large to be printed in two hours and had to be reduced below the maximum printer dimensions.

Don River watershed model in 3D printing software

The following photo by Claire Oswald shows how the MakerBot Replicator 2 in the Toronto Reference Library’s digital innovation hub prints layer upon layer of the PLA plastic filament for the DEM surface and the standard hexagonal fill of cavities.

DEM in printing process - photo by C. Oswald

The final products of our initial 3D print experiments have dimensions of approximately 10-20cm. They have made the rounds among curious-to-enthusiastic students and colleagues. We are in the process of improving model quality, developing additional models, and planning for their use in environmental education and public outreach.

The printed Don River watershed model

3D-printed Toronto population density map

Geography at Ryerson – Your Social Innovation Powerhouse

August 26th, 2015

Innovation in higher education and scholarly research has always been a hallmark of the Department of Geography and Environmental Studies at Ryerson. Recent faculty and student achievements underline our position as a social innovation powerhouse on campus.

In the competition for “RECODE at Ryerson University” grants, @RyersonGeo faculty are leading three of the eight successful applications. That is 37.5% of these social innovation projects across campus, a proportion even more impressive if you consider the competitive process with eight grants selected among 33 applications, a success rate of only 24%.

oswald_3d-printed-DEM-tweet With her RECODE grant, Dr. Claire Oswald, in collaboration with Dr. Claus Rinner and 3D printing startup company Think To Thing, plans to use “A 3D elevation model of Toronto watersheds to promote citizen science in urban hydrology and water resources”. Undergraduate students from our Geographic Analysis and Environment and Urban Sustainability programs will help with processing geospatial data to create a tangible model of the Don River watershed. The model is to be used for school and community outreach on pressing urban water issues.

shaker_roncesvalles-OSMDr. Richard Shaker received a RECODE grant for “A prototype for reaching sustainability through local business improvement initiatives: Roncesvalles Village”. In collaboration with the Roncesvalles Business Improvement Area in Toronto, Dr. Shaker’s team will develop metrics of sustainability of local restaurants to support sustainable community planning and management.

millward_citytrees-homepageThe goal of Dr. Andrew Millward’s proposal is to advance “The Citytrees Project: a tool of social innovation that engages people to work collectively and make our cities greener and more resilient”. RECODE funding will assist with forming new community partnerships and collecting tree data with GPS in collaboration with the Toronto Parks and Trees Foundation.

In addition to the faculty grants, our students were equally active and successful in applying for funding from the RECODE student competition.

Jennifer Fisher, a student in our BA in Environment and Urban Sustainability, received a grant to create “Soul Roots”, an urban agriculture project that employs “alternative farming practices to create large yield crops on a contaminated land site”. Working with Provincial and municipal partners in Toronto’s Parkdale community, the project also aims to demonstrate the social and economic impact of local food production.

Sarah Brigel, another student in the EUS program, is using RECODE funds to develop a pilot for her “Microbe-Hub Campus Compost Initiative”. The project aims to divert all organic waste from the Faculty of Arts’ Jorgenson Hall 14-storey building using a closed-loop vermicomposting system.

Another playing field for social innovation made @RyersonGeo is the Faculty of Arts’ SocialVentures Zone. Of the seven student-led social enterprises currently being incubated in the Zone, two were founded by our students, including Jennifer’s “Soul Roots”.

The other SocialVenturesZone project is Claire Stevenson-Blythe’s “Reciprocity”, an app-based platform to help people with signing up for local environmental volunteer opportunities. Claire’s enterprise is focused on engaging active citizenship and sharing solutions for the sustinability issues of our time.

Geography in its analytic, applied, and urban-focused form practiced at Ryerson is destined to inspire and train future social innovators and sustainability leaders. Stay tuned for more news!

Background on the RECODE at Ryerson University initiative:

List of student projects in the SocialVentures Zone:

Looking for a secure, laid-back, and meaningful job in a growing field? Get into Geography!

July 10th, 2015

This text was first posted as a guest contribution to WhyRyerson?, the Undergraduate Admissions and Recruitment blog at Ryerson University. Images were added after the initial posting.

Geography@Ryerson is different. Atlases, globes, and Google Maps are nice pastimes, but we are more interested in OpenStreetMap, CartoDB, and GeoDA. We map global flight paths, tweets, invasive species, and shoplifters. As a student in Geographic Analysis you will gain real-world, or rather real-work, experience during your studies. This degree is unique among Geo programs in Ontario, if not in Canada, for its career focus.


Mapping global flight paths.
(Source: Toronto Star, 24 May 2013

The BA in Geographic Analysis has a 40-year record of placing graduates in planning and decision-making jobs across the public and private sectors. Jobs include Data Technician, Geographic Information Systems (GIS) Specialist, Geospatial Analyst, Mapping Technologist, GIS Consultant, Environmental Analyst, Market Research Analyst, Real-Estate Analyst, Crime Analyst, and many more. You name the industry or government branch, we’ll tell you what Geographers are doing for them. And these jobs are secure: Many are within government, or, if they are in the private sector, they tend to be in units that make businesses more efficient (and therefore are essential themselves!).

And these are great jobs, too. In November 2013, GIS Specialists were characterized as a low-stress job by CNN Money/PayScale. There were half a million positions in the US, with an expected 22% growth over 10 years, and a median pay of US$53,400 per year. In their previous survey, Market Research Analysts had made the top-10, with over a quarter million jobs, over 40% expected growth, and a median pay of US$63,100. The 2010 survey described GIS Analyst as a stress-free job with a median salary of US$75,000.


Mapping Technologist, one of Canada’s best jobs!
(Source: Canadian Business, 23 April 2015)

Closer to home, in April 2015 Canadian Business magazine put Mapping Technologists among the top-10 of all jobs in Canada! They note that “The explosion of big data and the growing need for location-aware hardware and software has led to a boom in the field of mapping”. With a median salary of CA$68,640, a 25% salary growth, and a 20% increase in jobs over five years, “this class of technology workers will pave the way”. According to Service Canada, “Mapping and related technologists and technicians gather, analyze, interpret and use geospatial information for applications in natural resources, geology, environment and land use planning. […] They are employed by all levels of government, the armed forces, utilities, mapping, computer software, forestry, architectural, engineering and consulting firms”. Based on the excellent reputation of our program in the Toronto area, you can add the many jobs in the business, real-estate, social, health, and safety fields to this list!


Sample applications of Geographic Analysis
(Source: Google image search)

While you may find the perspective of a well-paid, laid-back job in a growing field attractive enough, there is more to being a Ryerson-trained Geographer. Your work will help make important decisions in society. This could be with the City of Toronto or a Provincial or Federal ministry, where you turn geospatial data into maps and decision support tools in fields such as environmental assessment, social policy, parks and forestry, waste management, immigration, crime prevention, natural resources management, utilities, transportation, … . Or, you may find yourself analysing socio-economic data and crime incidents for a regional police service in order to guide their enforcement officers, as well as crime prevention and community outreach activities. Many of our graduates work for major retail or real-estate companies determining the best branch locations, efficient delivery of products and services, or mapping and forecasting population and competitors. Or you could turn your expertise into a highly profitable free-lance GIS and mapping consultancy.

Geography is one of the broadest fields of study out there, which can be intimidating. Geography@Ryerson however is different, as we provide you with a “toolkit” to turn your interest in the City, the region, and the world, and your fascination with people and the environment, into a fulfilling, secure, laid-back, yet meaningful job!

Toronto elevation model in Minecraft

June 8th, 2015

Minecraft is a fascinating video game that remains popular with the pre-teen, teen, and post-teen crowds. You build and/or exploit a 3D world by manipulating blocks of various materials such as “stone”, “dirt”, or “sand”. In the footsteps of my colleague Pamela Robinson in the School of Urban and Regional Planning, and her student Lisa Ward Mather, I became interested in ‘serious’ applications of Minecraft. Lisa studied the use of the game as a civic engagement tool. Apparently, the blocky 3D nature of Minecraft worlds can be useful in planning to give viewers an idea of planned building volumes while making it clear that preliminary display are not architectural plans.

Taking a geographic perspective, I am interested in the potential of Minecraft to educate kids about larger areas, say the City of Toronto. In this post, I outline the conversion of a digital elevation model (DEM) into a Minecraft terrain. I imagine the output as a novel way for ‘gamers’ to explore and interact with the city’s topography. Some pointers to related, but not Toronto-specific work include:

  • GIS StackExchange discussion on “Bringing GIS data into Minecraft“, including links to the UK and Denmark modeled in Minecraft
  • A video conversation about “Professional Minecraft GIS“, where Ulf Mansson combined OpenStreetMap and open government data
  • Workflow instructions for converting “Historical Maps into Minecraft” using WorldPainter, which automatically converts DEMs into Minecraft terrain (if I had seen this before I started implementing the Python script outlined below…)
  • An extensive webinar on “Geospatial and Minecraft” by FME vendor Safe Software, touching on creating Minecraft worlds from DEMs, GPS, LiDAR, building information management, and the rule-based CityEngine software

The source data for my modest pilot project came from the Canadian Digital Elevation Model (CDEM) by Natural Resources Canada, accessed using the GeoGratis Geospatial Data Extraction tool at In QGIS, I converted the GeoTIFF file to ASCII Grid format, which has the advantage of being human-readable. I also experimented with clipping parts from the full DEM and/or reducing the raster resolution, since the first attempts at processing would have taken several hours. The QGIS 2.2 raster translate or clip operations ran a GDAL function along the following lines (see and for details):

gdal_translate -projwin [xmin ymin xmax ymax] -outsize 25% 25% -of AAIGrid [input_file.tif] [output_file.asc]

On the Minecraft side, you need an account (for a small cost), a working copy of the game, and an installation of MCEdit. Player accounts are sold and managed by the game’s developer company, Mojang, see The Minecraft software itself is launched from the Web – don’t ask about the details but note that I am using version 1.8.7 at the time of writing. MCEdit is a free tool for editing saved Minecraft worlds. It has an option to add functionality through so-called ‘filters’.

The MCEdit filter I wrote is “”, a Python script that collects a few input parameters from the user and then reads an ASCII GRID file (currently hard-coded to the above-mentioned Toronto area DEM), iterates through its rows (x direction) and columns (y direction in GIS, z in Minecraft), and recreates the DEM in Minecraft as a collection of ‘columns’ (z direction in GIS, y in Minecraft). Each terrain column is made of stone at the base and dirt as the top-most layer(s), or of other user-defined materials.

I have freshly uploaded the very first version 0.1 to GitHub, see (This also serves as my first developer experience with GitHub!) The general framework for an MCEdit filter and the loop creating the new blocks were modified from the “” (Mountain Generator) filter found at The filter is ‘installed’ by placing it in the filter subfolder in the MCEdit installation. The process then simply involves creating an empty world (I used a superflat world with only a bedrock layer) and running the DEM Generator filter. To run any filter in MCEdit, select an area of the world, press ‘5’, and select the filter from the list.


Converting the 2,400 by 1,600 pixel CDEM dataset shown in the above screenshot of my QGIS project took about half a day on a middle-aged Dell Latitude E6410 laptop.  The screenshot below shows that many data “chunks” are missing from this preliminary result, perhaps an issue when saving the terrain in MCEdit.


With a coarser DEM resolution of 600 by 400 pixels and using a newer Dell XPS 12 tablet (!), the processing time was reduced to 10 or so minutes and the result is promising. In the following screenshots, we are – I believe – looking at the outlets of the Humber River and Don River into Lake Ontario. Note the large vertical exaggeration that results from the horizontal dimensions being shrunk from around 1 block = 20m to 1 block = 80m, while vertically 1 block corresponds to 5m.



There remain a number of challenges, including a problem translating the geographic x/y/z coordinate system into the game’s x/-z/y coordinate system – the terrain currently is not oriented properly. More thought also has to be put into the scaling of the horizontal dimensions vis-a-vis the vertical dimension, adding the Lake Ontario water level, and creating signs with geographic names or other means of orientation. Therefore, your contributions to the GitHub project are more than welcome!

Update, 10 June 2015: I was made aware of the #MinecraftNiagara project, which Geospatial Niagara commissioned to students in the Niagara College GIS program. They aim to create “a 1:1 scale representation of Niagara’s elevation, roads, hydrology and wooded areas” to engage students at local schools with the area’s geography. It looks like they used ArcGIS and the FME converter, as described in a section of this blog post: Two screenshots of the Lower Balls Falls near St. Catharines were provided by @geoniagara’s Darren Platakis (before and after conversion):

minecraftNiagara-screenshot1    minecraftNiagara-screenshot2


The @RyersonGeo Team at CAG 2015

June 2nd, 2015

Blog post by K.W.Forsythe and C.Rinner

The Canadian Association of Geographers (CAG) 2015 Annual Meeting is held at Simon Fraser University (Vancouver Campus) from June 1-5. A good number of faculty and students from Ryerson’s Department of Geography and Environmental Studies are taking part. The papers and sessions (in chronological order) are as follows, with the first one already running at the time of posting this list:

1) Tuesday June 2, 8:30 – Soil and Sediment Analysis (Harbour Centre 2050, Alan and Margaret Eyre Boardroom) Chair: Terence Day

Christine J. Valancius, K. Wayne Forsythe, Ryerson University; Chris H. Marvin, Environment Canada; James P. Watt*, CH2M
Using Geovisualization and Bathymetry to Assess Lead Sediment Contamination in Lake St. Clair

2) Tuesday June 2, 1:30 (Until 5.00 pm) – Poster Session 1 – The Arctic, Tourism, Conservation (Wosk Centre for Dialogue 320 Strategy Room)

Alexis Robinson, David Atkinson, Ryerson University
Spatially explicit hydrological model evaluation for a High Arctic watershed

3) Wednesday June 3, 8:30 – Vegetation Monitoring (Harbour Centre 2050, Alan and Margaret Eyre Board Room) Chair: Zhaoqin Li

Vadim Sabetski, Andrew A. Millward, Ryerson University
Virtual Daylighting: Enhancing Arboriculture Consulting Practices Through Tree Root Location with Ground‐Penetrating Radar

4) Friday June 5, 10:30 – Geographies of Crime 2 (Wosk Centre for Dialogue 420, Strategy Room) Special Session Organizers: Martin Andresen and Katherine Wuschke, Simon Fraser University, Chair: Martin Andresen

Shuguang Wang, Jarrett Moore*, Ryerson University
A GIS‐assisted analysis of journey‐to‐crime and activity space of offenders

Shannon Strelioff, Lu Wang, Ryerson University
Assessing the Predictive Power of Risk Terrain Modeling with respect to Street Level Robbery in the Regional Municipality of Durham, Ontario

5) Friday June 5. 10:30 – Sustainability and Land Classification Issues (Wosk Centre for Dialogue 470, Hamber Foundation Board Room) Chair: Scott Slocombe

Kaylin Chin, Richard R. Shaker, Ryerson University
Evaluating patterns of sustainability across the contiguous United States: Application of the United Nation’s Indicators of Sustainable Development Report

6) Friday June 5, 10:30 – Volunteered Geographical Information and the City: Sensing urban wellness with user‐generated data (Harbour Centre 2200, RBC Dominion Securities Meeting Room) Organizers: Colin Robertson, Wilfrid Laurier University, Rob Feick, University of Waterloo, Chairs: Colin Robertson and Rob Feick

Victoria Fast, Claus Rinner, Ryerson University
Putting place back into food: Durham’s local food VGI system

7) Friday June 5, 1:30 – “Bringing Housing Back In”: Immigrant Housing and Settlement Experiences in Canadian Cities (Wosk Centre for Dialogue 470, Hamber Foundation Board Room) Sponsorship: Diversity, Migration, Ethnicity and Race Study Group, Organizers of Special Session: Sutama Ghosh, Ryerson University; Carlos Texeira, University of British Columbia Okanagan, Chair: Sutama Ghosh

Sutama Ghosh, Ryerson University
Home as a Paradoxical Space: Experiences of Professional South Asian Mothers in Toronto

* denotes alumni co-authors

These presentations represent ongoing research in Geography, Environmental Studies, and GIScience, and involve students and alumni from our Geographic Analysis and Master of Spatial Analysis (MSA) programs in addition to a student in the PhD in Environmental Applied Science and Management. See you all in Vancouver!


My takeaways from AAG 2015

May 21st, 2015

The 2015 Annual Meeting of the Association of American Geographers (AAG) in Chicago is long gone – time for a summary of key lessons and notable ideas taken home from three high-energy conference days.

Choosing which sessions to attend, was the first major challenge, as there were over ninety (90!) parallel sessions scheduled in many time slots. I put my program together based on presentations by Ryerson colleagues and students ( and those given by colleagues and students of the Geothink project (, as well as by looking through the presenter list and finding sessions sponsored by select AAG specialty groups (notably GIScience and Cartography). Abstracts for the presentations mentioned in this blog can be found via the “preliminary” conference program at

Upon arrival, I was impressed by the size and wealth of the industrial and transportation infrastructure in Chicago as well as the volume of the central business district, as seen from the airport train and when walking around in the downtown core.

aag-photo1 aag-photo3

My conference started on Wednesday, 22 April 2015, with Session 2186 “Cartography in and out of the Classroom: Current Educational Practices“. In a diverse set of presentations, Pontus Hennerdal from Stockholm University presented an experiment with a golf-like computer game played on a Mercator-projected world map to help children understand map projections. Pontus also referred to the issue of “world map continuity” using an animated film that is available on his homepage at In the second presentation, Jeff Howarth from Middlebury College assessed the relationship between spatial thinking skills of students and their ability to learn GIS. This research was motivated by an anonymous student comment about a perceived split of GIS classes into those students who “get it” vs. those who don’t. Jeff notes that spatial thinking along with skills in orientation, visualization, and a sense of direction sets students up for success in STEM (science, technology, engineering, math) courses, including GIS. Next was Cindy Brewer, Head of the Department of Geography at Penn State University, with an overview of additions and changes to the 2nd edition of her Esri Press book “Designing Better Maps”. The fourth presentation was given by David Fairbairn of Newcastle, Chair of the Commission on Education and Training of the International Cartographic Association. David examined the accreditation of cartography-related programs of study globally, and somewhat surprisingly, reported his conclusion that cartography may not be considered a profession and accreditation would bring more disadvantages (incl. management, liability, barriers to progress) than benefits to the discipline. Finally, Kenneth Field of Esri took the stage to discuss perceptions and misconceptions of cartography and the cartographer. These include the rejection of the “map police” when trained cartographers dare to criticize the “exploratory playful” maps created by some of today’s map-makers (see my post at

A large part of the remainder of Wednesday was spent in a series of sessions on “Looking Backwards and Forwards in Participatory GIS“. Of particular note the presentations by Renee Sieber, professor of many things at McGill and leader of the Geothink SSHRC Partnership Grant (, and Mike McCall, senior researcher at Universidad Nacional Autonoma de Mexico. Renee spoke thought-provokingly, as usual, about “frictionless civic participation”. She observes how ever easier-to-use crowdsourcing tools are reducing government-citizen interactions to customer relationships, and participation is becoming a product being delivered efficiently, rather than a democratic process that engages citizens in a meaningful way. Mike spoke about the development of Participatory GIS (PGIS) in times of volunteered geographic information (VGI) and crowdsourcing, arguing to operationalize VGI within PGIS. The session also included a brief discussion among members of the audience and presenters about the need for base maps or imagery as a backdrop for PGIS – an interesting question, as my students and I are arguing that “seed contents” will help generate meaningful discussion, thus going even beyond including just a base map. Finally, two thoughts brought forward by Muki Haklay of University College London: Given the “GIS chauffeurs” of early-day PGIS projects, he asked whether we continue to need such facilitators in times of Renee Sieber’s frictionless participation? And, he observed that the power of a printed map brought to a community development meeting is still uncontestable. Muki’s extensive raw notes from the AAG conference can be found on his blog at

In the afternoon, I dropped in to Session 2478, which celebrated David Huff’s contribution to applied geography and business. My colleague Tony Hernandez chaired and co-organized the session, in which Tony Lea, Senior VP Research of Toronto-based Environics Analytics and instructor in our Master of Spatial Analysis (MSA) program, and other business geographers paid tribute to the Huff model for predicting consumers’ spatial behaviour (such as the probability of patronizing specific store locations). Members of the Huff family were also present to remember the man behind the model, who passed away in Summer 2014. A written tribute by Tony Lea can be found at

Also on my agenda was a trip to the AAG vendor expo, where I was pleased to see my book – “Multicriteria Decision Analysis in Geographic Information Science” – in the Springer booth!


Thursday, 23 April 2015, began with an 8am session on “Spatial Big Data and Everyday Life“. In a mixed bag of presentations, Till Straube of Goethe University in Frankfurt asked “Where is Big Data?”; Birmingham’s Agnieszka Leszczynski argued that online users are more concerned with controlling their personal location data than with how they are ultimately used; Kentucky’s Matt Wilson showed select examples from half a century of animated maps that span the boundary between data visualization and art; Monica Stephens of the University at Buffalo discussed the rural exclusions of crowdsourced big data and characterized Wikipedia articles about rural towns in the US as Mad Libs based on Census information; and finally, Edinburgh’s Chris Speed conducted an IoT self test, in which he examined the impact of an Internet-connected toilet paper holder on family dynamics…

The remainder of Thursday was devoted to CyberGIS and new directions in mapping. The panel on “Frontiers in CyberGIS Education” was very interesting in that many of the challenges reported in teaching CyberGIS really are persistent challenges in teaching plain-old GIS. For example, panelists Tim Nyerges, Wenwen Li, Patricia Carbajalas, Dan Goldberg, and Britta Ricker noted the difficulty of getting undergraduate students to take more than one or two consecutive GIS courses; the challenge of teaching advanced GIS concepts such as enterprise GIS and CyberGIS (which I understand to mean GIS-as-a-service); and the nature of Geography as a “discovery major”, i.e. a program that attracts advanced students who are struggling in their original subjects. One of the concluding comments from the CyberGIS panel was a call to develop interdisciplinary, data-centred program – ASU’s GIScience program was named as an example.

Next, I caught the first of two panels on “New Directions in Mapping“, organized by Stamen’s Alan McConchie, Britta Ricker of U Washington at Tacoma, and Kentucky’s Matt Zook. A panel consisting of representative of what I call the “quick-service mapping” industry (Google, Mapbox, MapZen, Stamen) talked about job qualifications and their firms’ relation to academic teaching and research. We heard that “Geography” has an antiquated connotation and sounds old-fashioned, that the firms use “geo” to avoid the complexities of “geography”, and that geography is considered a “niche” field. My hunch is that geography is perhaps rather too broad (and “geo” even broader), but along with Peter Johnson’s (U Waterloo) comment from the audience, I must also admit that you don’t need to be a geographer to make maps, just like you don’t have to be a mathematician to do some calculations. Tips for students interested in working for the quick-service mapping industry included to develop a portfolio, practice their problem-solving and other soft skills, and know how to use platforms such as GitHub (before learning to program). A telltale tweet summarizing the panel discussion:

Thursday evening provided an opportunity to practice some burger cartography. It was time for the “Iron Sheep” hackathon organized by the FloatingSheep collective of academic geographers. Teams of five were given a wild dataset of geolocated tweets and a short 90-or-so minute time frame to produce some cool & funny map(s) and win a trophy for the best or worst or inbetween product. It was interesting to see how a group of strangers new to the competition and with no clue about how to get started, would end up producing a wonderful map such as this :-)


My last day at AAG 2015, Friday, April 24, took off with a half-day technical workshop on “Let’s Talk About Your Geostack”. The four active participants got a tremendous amount of attention from instructor-consultant @EricTheise. Basically, I went from zero to 100 in terms of having PostgreSQL, PostGIS, Python, NodeJS, and TileMill installed and running on my laptop – catching up within four hours with the tools that some of my students have been talking about, and using, in the last couple of years!

In the afternoon, attention turned to OpenStreetMap (OSM), with a series of sessions organized by Muki Haklay, who argues that OSM warrants its own branch of research, OpenStreetMap Studies. I caught the second session which started with Salzburg’s Martin Loidl showing an approach in development to detect and correct attribute (tag) inconsistencies in OSM based on information contained in the OSM data set (intrinsic approach). Geothink co-investigator Peter Johnson of UWaterloo presented preliminary results of his study of OSM adoption (or lack thereof) by municipal government staff. In eight interviews with Canadian city staff, Peter did not find a single official use of OSM. Extensive discussions followed the set of four presentations, making for a highly informative session. One of the fundamental questions raised was whether OSM is distinct enough from other VGI and citizen science projects that it merits its own research approach. While typically considered one of the largest crowdmapping projects, it was noted that participation is “shallow” (Muki Haklay) with only 10k active users among 2 million registered users. Martin Loidl had noted that OSM is focused on geometry data, yet with a flat structure and no standards other than those agreed-upon via the OSM wiki. Alan McConchie added the caution that OSM contributions only make it onto the map if they are included in the “style” files used to render OSM data. Other issues raised by Alan included the privacy of contributors and questions about authority. For example, contributors should be aware of the visualization and statistics tools developed by Pascal Neis at! We were reminded that Muki Haklay has developed a code of engagement for researchers studying OSM (read the documentation, experience actively contributing, explore the data, talk to the OSM community, publish open access, commit to knowledge transfer). Muki summarized the debate by suggesting that academics should act as “critical friends” vis-à-vis the OSM community and project. To reconcile “OSM Studies” with VGI, citizen science, and the participatory Geoweb, I’d refer to the typology of user contributions developed by Rinner & Fast (2014). In that paper, we do in fact single out OSM (along with Wikimapia) as a “crowd-mapping” application, yet within a continuum of related Geoweb applications.

Notes from #NepalQuake Mapping Sessions @RyersonU Geography

May 4th, 2015

This is a brief account of two “Mapping for Nepal” sessions at Ryerson University’s Department of Geography and Environmental Studies. In an earlier post found at, I collected information on humanitarian mapping for these same sessions.

Mapathon @RyersonU, Geography & Spatial on Monday, 27 April 2015, 10am-2pm. 1(+1) prof, 2 undergrads, 3 MSAs, 1 PhD, 1 alumnus came together two days after the devastating earthquake to put missing roads, buildings, and villages in Nepal on the map using the Humanitarian OpenStreetMap Team’s (HOT) task manager. Thank you to MSA alumnus Kamal Paudel for initiating and co-organizing this and the following meetings.


Mapathon @RyersonU, Geography & Spatial on Sunday, 3 May 2015, 4pm-8pm. Our second Nepal mapathon brought together a total of 15 volunteers, including undergraduate BA in Geographic Analysis and graduate Master of Spatial Analysis (MSA) students along with MSA alumni, profs, and members of the Toronto-area GIS community. On this Sunday afternoon we focused on completing and correcting the road/track/path network and adding missing buildings to the map of Nepal’s most affected disaster zones. Photos via our tweets:


My observations and thoughts from co-organizing and leading these sessions, and participating in the HOT/OSM editing:

  • In addition to supporting the #EqResponseNp in a small way, the situation provided an invaluable learning opportunity for everyone involved. Most participants of our sessions had never contributed to OSM, and some did not even know of its existence, despite being Geography students or GIS professionals. After creating OSM accounts and reading up on the available OSM and Nepal-specific documentation, participants got to map hundreds of points, lines, or polygons within just a couple of hours.
  • The flat OSM data model – conflating all geometries and all feature types in the same file – together with unclear or inconsistent tagging instructions for features such as roads, tracks, and paths challenged our prior experience with GIS and geographic data. Students in particular were concerned about the fact that their edits would go live without “someone checking”.
  • While the HOT task manager and general workflow of choosing, locking, editing, and saving an area was a bit confusing at first, the ID editor used by most participants was found to be intuitive and was praised by GIS industry staff as “slick”.
  • The most recent HOT tasks were marked as not suitable for beginners after discussions among the OSM community about poor-quality contributions, leaving few options for (self-identified) beginners. It was most interesting to skim over the preceding discussion on the HOT chat and mailing list, e.g. reading a question about “who we let in”. I am not sure how the proponent would define “we” in a crowd-mapping project such as OSM.
  • There was a related Twitter #geowebchat on humanitarian mapping for Nepal: “How can we make sure newbies contribute productively?”, on Tuesday, 5 May 2015 (see transcript at
  • The HOT tasks designated for more experienced contributors allowed to add post-disaster imagery as a custom background. I was not able to discern whether buildings were destroyed or where helicopters could land to reach remote villages, but I noticed numerous buildings (roofs) that were not included in the standard Bing imagery and therefore missing from OSM.
  • The GIS professionals mentioned above included two analysts with a major GIS vendor, two GIS analysts with different regional conservation authorities, a GIS analyst with a major retail chain, and at least one GIS analyst with a municipal planning department (apologies for lack of exact job titles here). The fact that these, along with our Geography students, had mostly not been exposed to OSM is a concern, which however can be easily addressed by small changes in our curricula or extra-curricular initiatives. I am however a bit concerned as to whether the OSM community will be open to collaborating with the #GIStribe.
  • With reference to the #geowebchat, I’d posit that newbie != newbie. Geographers can contribute a host of expertise around interpreting features on the ground, even if they have “never mapped” (in the OSM sense of “mapping”). Trained GIS experts understand how feature on the ground translate into data items and cannot be considered newbies either. In addition, face-to-face instructions by, and discussion with, experienced OSM contributors would certainly help to achieve a higher efficiency and quality of OSM contributions. In this sense, I am hoping that we will have more crowd-mapping sessions @RyersonU Geography, for Nepal and beyond.